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Private information retrieval (PIR) protocol is a powerful cryptographic tool and has received considerable attention in recent
years as it can not only help users to retrieve the needed data from database servers but also protect them from being known by the
servers. Although many PIR protocols have been proposed, it remains an open problem to design an efficient PIR protocol whose
communication overhead is irrelevant to the database size N. In this paper, to answer this open problem, we present a new
communication-efficient PIR protocol based on our proposed single-ciphertext fully homomorphic encryption (FHE) scheme,
which supports unlimited computations with single variable over a single ciphertext even without access to the secret key.
Specifically, our proposed PIR protocol is characterized by combining our single-ciphertext FHE with Lagrange interpolating
polynomial technique to achieve better communication efficiency. Security analyses show that the proposed PIR protocol can
efficiently protect the privacy of the user and the data in the database. In addition, both theoretical analyses and experimental
evaluations are conducted, and the results indicate that our proposed PIR protocol is also more efficient and practical than
previously reported ones. To the best of our knowledge, our proposed protocol is the first PIR protocol achieving O(1)
communication efficiency on the user side, irrelevant to the database size N.

1. Introduction

Private information retrieval (PIR) protocol [1] is a cryp-
tographic primitive run between database servers and a user.
The salient feature of PIR is that it ensures the user can
obtain some data from the database servers, while the da-
tabase servers cannot learn anything about the queries of the
user. To obtain the feature, a trivial solution for the user is to
download all the data from the database servers and obtain
the data he wants to ask at any time. However, this solution
wastes plenty of time and storage space for the user since the
database servers usually store a huge volume of items. In
addition, considering that there are continuous interactions
with multiservers at the price of communication costs for the

user, many research studies have been focused on the single-
server PIR protocol that is composed of only one database
server and one query user [1-7].

In 1997, the first single-server PIR protocol was pro-
posed by Kushilevitz and Ostrovsky [2]. They constructed a
PIR protocol based on group homomorphism and the
quadratic residuosity problem and achieved the commu-
nication complexity O(N¢log N) bits (the symbols
O(),Q(), ando(-) are commonly used asymptotic com-
plexity notations. We denote an asymptotic upper bound,
noncompact upper bound, and lower bound with O (-), 0 (+),
and Q (), respectively) on the user side for database size N
and any constant e. After that, some single-server PIR
protocols were also proposed [3-5]. Kushilevitz and
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Ostrovsky [3] applied the trapdoor permutation approach
to the single-server PIR protocol with communication
overhead N — cN/k + O (k?) bits, where c is a constant and k
is the security parameter of the one-way trapdoor permu-
tation. Gentry and Ramzan [4] presented a single-server PIR
protocol based on a slight variation of the computational
difficulty of deciding whether a small prime divides Euler’s
totient function of any composite integer. The total com-
munication cost of the protocol is 3 messages, each of the
size of Q(log> °" N) bits. A PIR protocol was proposed
based on group homomorphism by Melchor et al. [5] of
communication O (v/N) bits.

In recent years, with the development of fully homo-
morphic encryption (FHE) [8, 9], many researchers have
turned into utilizing the FHE schemes to construct the
single-server PIR protocols [6, 7, 10, 11]. Brakerski and
Vaikuntanathan [10] proposed a brief PIR protocol based on
learning with errors (LWE) by using FHE. The FHE DGHV
[12] over the integers was applied to the PIR protocols by Yi
et al. [6]. The communication overhead of the PIR protocol
is O(log N) bits and also relies on the size of ciphertext
O(\°) (the security parameter A) in DGHV. Li et al. [7]
modified Brakerski and Vaikuntanathan’s PIR protocol [10]
and united the HAO scheme in [13] to construct a PIR
protocol. However, the main idea of the protocol is similar to
invoking the decryption circuit homomorphically, which is
expensive and of extremely low efficiency. Aiming at single-
server PIR protocols, we notice that all the aforementioned
PIR protocols depend on the database size N in terms of
communication cost. When the size N becomes larger, the
communication will not be efficient. Therefore, how to
efficiently design a PIR protocol with communication
overhead O(1), i.e., independent on the database size N,
becomes an open problem.

In this paper, to address the above open problem, we
propose a new FHE scheme with special properties and
utilize it to design a new single-server PIR protocol with
O(1) communication efficiency for any user. To the best of
our knowledge, our single-server PIR protocol is the most
efficient one in terms of the communication efficiency. In
addition, our single-server PIR protocol also allows a user to
retrieve positive integer data from the database server, in-
stead of a single bit for every query. Specifically, the main
contributions of this paper are threefold:

(i) First, in order to achieve O(1) communication
efficiency on the user side, we design a new kind of
FHE scheme called single-ciphertext FHE, which
supports unlimited computations with single vari-
able over a single ciphertext without access to the
secret key. Our proposed single-ciphertext FHE
scheme is characterized with extremely efficient in
terms of both encryption and decryption dependent
on the truncated polynomial ring. Detailed security
analysis illustrates that the proposed FHE scheme is
one-way secure, which is exactly equivalent to the
3rd RSA problem.

(ii) Second, we take the single-ciphertext FHE as a
symmetric encryption scheme and the Lagrange
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interpolating polynomial technique to construct our
single-server PIR protocol. Security analyses show
that our proposed PIR protocol can efficiently
protect the privacy of the user and the data in the
database in our defined security model.

(iii) Third, we conduct both theoretical analyses and
experimental evaluations to demonstrate that our
proposed PIR protocol is indeed efficient in terms of
computational complexity and communication
overhead. In particular, our proposed protocol is the
first PIR protocol, which can achieve O(1) com-
munication efficiency, irrelevant to the database size
N.

The remainder of this paper is organized as follows. We
describe some preliminaries in Section 2. Then, in Section 3,
we formalize our system model, security model, and design
goal. In Section 4, we first present a new single-ciphertext
FHE scheme, followed by our single-server communication-
efficient PIR protocol. After that, the security analyses and
the performance evaluation of our single-server PIR pro-
tocol are given in Sections 5 and 6, respectively. Some related
works are also discussed in Section 7. Finally, we draw our
conclusion in Section 8.

2. Preliminaries

In this section, we first give some notations that will be used
throughout this paper and then describe the definitions of
the truncated polynomial rings and our proposed single-
ciphertext FHE scheme.

2.1. Notations. In this paper, we denote row vectors by bold
letters (e.g., DB and c), and the symbol DB[i] represents the
i-th data in DB. Some other notations that will be used in
this work are listed in Table 1.

2.2. Truncated Polynomial Rings. The truncated polynomial
rings will be used as a building block for constructing a
special FHE scheme in this work. Essentially, the concept of
truncated polynomials is not quite complicated, e.g., an
extension field is constructed from [F[x] defined over a finite
field F modulo a monic irreducible polynomial [14], and the
NTRU public key cryptosystem [15] also utilizes a univariate
truncated polynomial ring modulo XV — 1. Though the
above examples only involve univariate polynomials, we can
extend the situations to the case of bivariate polynomials.

To be specific, we can set n = pq to be a standard RSA
modulus, namely, # is the product of two large primes p and
g. In order to make our proposal more efficient, we consider
the RSA cryptosystem [16] with the encryption public key
e = 3, from which we define two polynomials f (x) = x* -
u(modn) and g(y) = y* — v(modn) withu,v € Z,. We also
define a bivariate polynomial set
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TaBLE 1: Notations.

Notation Explanation

|al The binary length of an integer a
ged(a,b) The greatest common divisor of integers a,b
¢ (n) The Euler function of integer n

Z The integer ring

Z, {0,1,...,n— 1}, the ring of integers modulo »
Z,x,yl The bivariate polynomial ring on Z,,

and the additive and multiplicative operations on S. Given
two bivariate polynomials 4, (x, y) = Y2, Y%, h{"x'y/ and
hy(%,9) = Y00 Yo h,-(jz)x"yj, the sum of h,(x,y) and
h,(x, ) is defined as h*(x,y) = Y7, Z?:o hix'yl, where
hi; = h +hi(j2)(mod n). The multiplication can also be
deﬁnedj as h* (x,y) = hy (x, y)h, (x, y) (modn, f (x),g(y)).
To perform the multiplication, we first carry out the standard
polynomial multiplication h, (x, y)h,(x, y) on Z,[x, y].
Because the maximum degree with respect to x (y, re-
spectively) is 2 in h, (x,y) (h,(x,y), respectively), the
maximum degree of x (y, respectively) in the multiplication
hy (x, y)h, (x, y) becomes 4. Thus, in the second step, we
perform modulo f(x) =x*-u and g(y) = »* —v on the
multiplication h, (x, y)h, (x, y) to truncate it back to the set
S as follows: replace x> (y°, respectively) with u (v, re-
spectively), and replace x* (y*, respectively) with ux (vy,
respectively). From the definition, one can easily verify that
Z,[x, y] (mod f (x), g(y)) also forms a ring called truncated
polynomial ring, and it is denoted as Z, [x, y]/{f (x), g(¥)).

2.3. Single-Ciphertext FHE Scheme. In the following, we will
formalize the definition of single-ciphertext FHE, together
with its security notion. Before that, we first give some
necessary descriptions of the special FHE.

The proposed single-ciphertext FHE is a special kind of
FHE, which supports unlimited computations with single
variable over a single ciphertext without access to the secret
key. Different from the general FHE, the evaluation algo-
rithm of our single-ciphertext FHE is subject to performing
upon a single ciphertext rather than any multiciphertexts. In
other words, our single-ciphertext FHE skips (or aborts) any
circuits with multivariables for the general FHE and allows
any computations over any circuits with single variable.
Compared with the general FHE, our single-ciphertext FHE
possesses less functionality due to the single ciphertext, but it
still permits any computations on any circuits with single
variable. Hence, our single-ciphertext FHE, as a well-suitable
cryptographic tool, is enough for the requirements of single-
server PIR protocols since the evaluation of the single-server
PIR protocols can be regarded as univariate polynomials.

Definition 1. (single-ciphertext FHE scheme). A single-
ciphertext FHE scheme consists of four probabilistic poly-
nomial time (PPT) algorithms, namely, key generation,
encryption, decryption, and homomorphic evaluation al-
gorithm. The details are as follows:

(i) Key generation (pk, evk, sk~ KeyGen(A)): take the
security parameter A as the input, and output a

public key pk, an evaluation key evk, and a secret
key sk

(ii) Encryption (c— Enc(m, pk)): using the public key
pk, encrypt a message m € M into a ciphertext c,
where M is the message space

(iii) Decryption (m« Dec(c, sk)): using the secret key sk,
decrypt a ciphertext ¢ to recover the corresponding
message m € M

(iv) Evaluation (¢ Eval(%, c, evk)): given a circuit with
single variable & and a ciphertext ¢ with the
underlying plaintext m, i.e., ¢ = Enc(m, pk), the
algorithm utilizes the evaluation key evk to
compute a new ciphertext ¢ = Eval(%, ¢, evk)

Note that the correctness of decryption requires that the
plaintext m can be correctly decrypted from the ciphertext,
i.e., m = Dec(Enc (m, pk), sk). The correctness of the ho-
momorphic evaluation requires that the ciphertext ¢ can be
correctly decrypted into the plaintext @ (m), namely,
Dec (¢, sk) = € (m).

Actually, our proposal single-ciphertext FHE scheme
performs no noises. Every time an evaluation on the ci-
phertext is performed, there is no noise to obscure the
underlying plaintext. In terms of the noiseless FHE schemes,
there is a main drawback: none can be strictly proved secure
and feasible in the framework of provable security. For more
introduction of noiseless FHE, one can refer to Section 7.
Hence, we give the following security definition for our
noiseless single-ciphertext FHE scheme.

Definition 2. (the one-way security of single-ciphertext
FHE). Given the security parameter A, the public key pk, the
evaluation key evk, and a ciphertext ¢ with the underlying
plaintext m, it should be difficult for any PPT adversary to
find m € M from the ciphertext ¢ such that ¢ = Enc (m, pk).
Formally, we require that for any PPT adversary &/, we have

Pr{m e M|pk, evk—KeyGen (1), c = Enc(m, pk)] <e(A),
(2)

where £(A) represents a negligible function.

Different from general security notions such as indis-
tinguishability under chosen-plaintext attack (IND-CPA)
and indistinguishability under chosen-ciphertext attack
(IND-CCA1) of known FHE schemes [8-10, 12, 17-22]
(FHE essentially supports malleability on ciphertexts and
hence cannot obtain the highest security goal, namely, in-
distinguishability under adaptive chosen-ciphertext attack
(IND-CCA2)), we only consider the one-way security due to
the following observations. Firstly, the security notion is tai-
lored for the single-ciphertext FHE scenarios, where no dis-
tinguishability games are permitted on distinct plaintexts.
Secondly, in the PIR scenario, the single-ciphertext FHE
scheme is used as a symmetric encryption algorithm without
considering the IND-CPA security in the public key en-
cryption schemes.



3. System Model, Security Model, and
Design Goal

In this section, we formalize our system model and security
model and identify our design goal.

3.1. System Model. In our system model, we consider a
typical single-server PIR protocol, which includes two en-
tities, namely, a user and a database (DB) server, as shown in
Figure 1.

(i) DB server: the database server is powerful in both
storing and computing data. In our system model,
the database server stores and processes a database
DB = {(i, DB[i])|0 <i< N — 1} with totally N items.
For simplicity of our PIR protocol discussed later, we
assume the value of each item DB[i] is a positive
integer, not just one bit. In addition, the server will
offer a PIR response to a query user after the latter
makes a PIR query with unbounded computations.

(ii) User: in our system model, we consider a query user
can directly make a PIR query to the DB server and
obtain the desirable result from the DB server.
Meanwhile, the user does not want to reveal the
queried value i to the DB server when asking the
corresponding data DB[i] from DB and hopes the
communication of PIR should be efficient.

Formally, a single-server PIR protocol in our system
model comprises three phases as follows:

(i) Query generation phase (Q (i)« QG(i)): taking the
index i as the input, the user sends a query Q (i) to
the server

(ii) Response generation phase (R (i)« RG(Q (i), DB)):
using the query Q(i) and the database DB, the
server returns a response R (i) to the user

(iii) Response retrieval phase (DB [i]«<— RR(R(i))): upon
receiving a response R (i), the user outputs the data
DB/i] corresponding to the index i

A single-server PIR protocol is correct if for any database
DB with any size N and any indexifor0<i< N — 1, DB[i] =
RR(DB,i,Q(i), R(i)) holds, where Q(i)=QG(i) and
R(i) = RG(Q(i), DB).

3.2. Security Model. In our security model, we consider the
DB server is honest but curious, and there is no collusion
between the DB server and any other third parties. In other
words, the DB server will faithfully follow the protocol;
however, he is curious about the queried value of the user.
Note that, in case the DB server is compromised by some
attackers, the compromised DB server may launch other
active attacks and return a response with errors to the user
who is not able to verify. However, since we focus on the
communication-efficient PIR protocol for the user in this
paper, those active attacks from the compromised DB server
are beyond the major work of this paper, though it is not
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difficult to apply some verifiable techniques to tackle these
attacks. For details, one can refer to Remark 3 in Section 5.

3.3. Design Goal. Our design goal is to present a commu-
nication-efficient PIR protocol on the user side to address
the requirements mentioned in the above system model and
security model. The communication-efficient PIR protocol is
the center of our attention; hence, we assume the power of
the server is unlimited, and the computation burden of the
server is less important than the one of any user. Specifically,
the following two objectives should be included:

(i) The proposed PIR protocol should be privacy pre-
serving: the queried index i should be private, and no
one, except the query user, can determine the value
of i. In addition, no one, except the query user, can
retrieve the data DB([i] after receiving the response
R (i) returned by the DB server.

(ii) The proposed PIR protocol should be communica-
tion eflicient: in order to achieve the above privacy
requirement, additional communication costs will be
incurred in the PIR protocols. Therefore, in the
proposed PIR protocol, we aim to make the query’s
communication efficient, i.e., achieving less com-
munication costs for the user.

4. Our Proposed Scheme

In this section, we will describe our communication-efficient
PIR protocol. Before delving into the details, we first present
our new single-ciphertext FHE scheme based on the
aforementioned truncated polynomial rings.

4.1. Our New Single-Ciphertext FHE Scheme. Our new single-
ciphertext FHE scheme comprises four algorithms, namely,
KeyGen, Enc, Dec, and Eval algorithms. The detailed de-
scriptions are as follows:

(i) KeyGen(A): taking the security parameter A (even
for simplicity) as the input, randomly generate
two A/2-bit large primes p and g satisfying gcd
(p-1,3)=1and ged (g-1,3) = 1, and compute
n=pg,¢mn) = (p—-1)(q—1) and the inverse d of
3 modulo ¢ (n), namely, 3 d = 1(modg(n)). The
modulus # is set as the public key pk =n, the
evaluation key is set as evk = #, and the integer d is
set as the secret key, i.e., sk =d.

(ii) Enc(m, pk): given a plaintext m ¢ M = Z,, ran-
domly choose a,b € Z, and compute u = a* (modn)
and v = b® (modn). Also, randomly choose 9 integers
a;; € Z, for i, j € {0,1,2}, and construct a polyno-
mial f(x,y) =Y, Z?:o a,-]-xi y/. Set a polynomial
F(x,y) = f(x,y) — f(a,b) (modn), and compute
c(x, y) = F(x, y) + m(modn). The ciphertextis ¢ =
Enc(m,n) = (u,v,c(x, y)).

(iii) Dec(c, sk): upon the receipt of a ciphertext ¢ =
(u,v,c(x, y)), compute a= u?(modn) and b=
v (modn) with the secret key d to obtain the two
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FIGURE 1: System model under consideration.

random numbers a,b. The plaintext can be recov-
ered by substituting a,b into c(x,y), that is,
c(a,b) = F(a,b) + m = m(modn) due to F(a,b) =
f(a,b) - f(a,b) = 0(modn).

(iv) Eval(]A‘, c,evk)): given the ciphertext «¢=
Enc(m,n) = (u,v,c(x, y)) and a univariate poly-
nomial f(x)=Y{,B:x € Z,[x], the evaluation
algorithm is described in Algorithm 1. We remind
that the involved addition and multiplication op-
erations are performed over the truncated poly-
nomial ring Z,[x, y]/{x* —u, y* — v). Especially,
for each iteration, ¢~ (x, y) will be truncated back to
the truncated polynomial ring via the reduction
operation modulo x* —u and y* —v. Hence, the
final result of c~(x, y) remains in the truncated
polynomial ring’ Z, [x, y]/{x® —u, y* —v), ie, it
remains a bivariate polynomial in S.

Remark 1. Note that, in order to ensure the one-way se-
curity of our single-ciphertext FHE scheme, the length of the
modulus 7 should be larger than 2048 bits, i.e., A >2048.

Correctness: in order to demonstrate the correctness of
the homomorphic evaluation algorithm, we need to show
that Dec(c~(x, y),d) = f (m). From Algorithm 1, one can
easily verify that

c}(x, y) = }(c(x, y)) = Zﬁic (x, y)i(mod mx —u, y3 - v).

i=0
(3)

Then, there must exist two bivariate polynomials
A(x,y),B(x,y) € Z,[x, y] such that

¢ (%) = Fe(x ) + Alx y)(x - u)
(4)
+ B(x, y)(y3 - v) (modn).

Since a® = u(modn) and b> = v(modn), we have

Dec(c} (x, y),d> - c>(a.b) = T (c(ab)
+ Al(a, b)(a3 - u) (5)
+B(a,b)(b* - v) (mod ).

Recall that ¢ (a,b) = m(modn), a® —u = 0(mod n), and
b® —v =0(modn), and we immediately have Dec(c~
(x,9),d) = c}(a, b) = f (m)(modn) as desired. f

Security: in the following, we prove our proposed single-
ciphertext FHE scheme is one-way secure based on the
hardness of the 3rd RSA problem.

Definition 3. (the 3rd RSA problem). The e-th RSA problem
is defined as follows: given the RSA public key #n = pg and e,
and a ciphertext 7, to find the plaintext y such that
7 = y° (modn). The 3rd RSA problem is the special case with
e=3.

Theorem 1. The one-way security of our proposed single-
ciphertext FHE scheme is polynomially equivalent to the 3rd
RSA problem.

Proof. Both directions (&) need to be proven. The direction
from the right to the left (&) is trivial. If an adversary can
break the 3rd RSA problem, then given a ciphertext ¢ =
(u,v,c(x,y)) of the single-ciphertext FHE scheme, the
adversary can solve two 3rd RSA problems a* = u(modn)
and b® = v(modn) to derive two integers a,b € Z, and fi-
nally breaks the one-way security by computing
m = c(a, b) (mod n).

In order to prove the direction from the left to the right
(=), we assume there is a PPT adversary &/ which can break
the one-way security of our scheme, i.e., m—g/ (c,n). Then,
we can construct another algorithm % which can utilize of
to break the 3rd RSA problem, i.e., y—3B (7, n), as shown in
Algorithm 2.

To prove the correctness of the reduction in Algorithm 2,
we first note that u =7 = y®(modn) and that m is the
plaintext corresponding to ¢ = (u, v, c(x, y)), so there must
exist a bivariate polynomial F (x, y) € Z, [x, y]/{x* —u, y° —
vy such that c(x,y)=F(x,y)+m(modn) and
F(u,b) = 0(modn). So, x = y(modn) is a common root for
both  congruences x*-u=x*-7n=0(modn) and
c(x,b) —m = 0(modn). Thus, we can efficiently perform the
Euclidean algorithm [23] to compute the greatest common
divisor x — u = ged (x* — u(mod n), c (x, b) — m(mod n)). So,
the plaintext ¢ of the RSA problem is recovered, i.e., we can
construct an algorithm 9 for solving the 3rd RSA problem.
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(1) Set c=(x,y) =0.
(2) For éachi=0,..

Input: ]7 =Y, Bx (modn), c = (u,v,c(x,)), evk =n.

., &, compute
¢ (%,9) = & (6, 9)e (%, ) + Boci (mod 1, ° =11, y° = ).
Output: c? = (u,v, C} (x, ).

ALGORITHM 1: Univariate polynomial evaluation algorithm.

(3)  Setc= (u,v,c(x,y)) and run me—o/ (c,n).

Output: y = — 0(mod n).

Input: the public modulus #, and the RSA ciphertext 7 € Z,,.
(1) Randomly choose an integer b € Z,, and compute v = b* (mod n).
(2)  Set u = and randomly generate a bivariate polynomial ¢ (x, y) € Z,,[x, y]/{x* —u, y* - v).

(4)  Compute the greatest common divisor x + 6 = gcd (x> — u(mod n), ¢ (x, b) — m (mod n)).

ALGORITHM 2: Algorithm % with access to <.

Note that Theorem 1 establishes an exact equivalence
between the one-wayness of the proposed single-ciphertext
FHE scheme and the 3rd RSA problem. One may doubt that
choosing the RSA encryption key as 3 will produce serious
threats on the security of the single-ciphertext FHE scheme.
In fact, in many implementations, choosing a relatively small
encryption key such as e = 3 or 27 + 1 is widely suggested to
reduce the encryption costs.

Computational complexity: next, we analyze the com-
putational costs of our single-ciphertext FHE scheme.

During the Enc phase, there are 2 modular multipli-
cations to compute u (v, respectively). Computing the
polynomial F(x, y) needs 18 modular multiplications and
some modular additions since there are i+ j modular
multiplications to compute the monomial a;;x'y/ for i, j =
0,1,2 in F(x,y). Compared with the calculation of the
modular multiplication, the time cost of modular addition
can be negligible. Hence, there are totally 22 modular
multiplications and some negligible modular additions in
the Enc phase. Considering the computational complexity
of a multiplication modulo n = pq is O(A?), we conclude
that the computational complexity of the Enc phase is
omd).

During the Dec phase, the main operations are to output
a,b from u,v by 2 modular exponentiation operations of
exponentiation d. Considering that the computational
complexity of a modular exponentiation is O (1°), the total
computational complexity of the Dec phase is O(A*) when
ignoring some modular additions.

During the Eval phase, the output ¢~ (x, y) is actually a
truncated bivariable polynomial. There dre a-iterations, and
every iteration performs a modular multiplication besides a
negligible modular addition. Hence, there are totally
a-modular multiplications and some negligible modular
additions. As a result, the computational complexity of the
Eval phase is O (a)*) subject to the value of « in ciphertext
evaluations.

In summary, the computational complexity is O (A%) for
encryption, O(A’) for decryption, and O(a)”) for evalua-
tion, respectively, where A >2048 is the length of the RSA
modulus 7.

Comparisons of several noiseless FHE: comparisons of
several noiseless FHE schemes among [24-26] with ours are
shown in Table 2. Nuida utilized the commutator and an
encoding scheme by a homomorphic mapping ¢ from
noncommutative group G to noncommutative group G to
construct the noiseless FHE. The ciphertext is composed of
two elements from G and Ker (¢) which is a subset of G.
However, the security is based on the open sampling of
group G, and the assumption that judging whether an el-
ement is in the kernel Ker (¢) is difficult. Yagisawa [25] is an
improved version of [26] with smaller ciphertext size; hence,
we only discuss about [25]. The octonion ring over the finite
field was used by Yagisawa to achieve 1: 8 length ratio of the
plaintext and ciphertext. Yagisawa’s noiseless FHE is im-
mune from the Grobner basis attacks, which is weaker than
our one-way security. With respect to ciphertext space and
length ratio, our noiseless FHE is more efficient than [25]
while less than [24]. Totally speaking, our single-ciphertext
FHE scheme is more superior to [24-26], especially con-
sidering that the security is more important than other
factors for noiseless FHE. O

4.2. Description of Our Communication-Efficient PIR Protocol.
Before delving our communication-efficient PIR protocol,
we first give a brief overview of how our single-ciphertext
FHE scheme is utilized to construct the single-server PIR
protocol.

(i) The single-server PIR protocol aims to help the user
to obtain the ith data from the server possessing the
whole database, without leaking the index i to the
server. Obviously, the server performs an evaluation
algorithm on a single ciphertext corresponding to
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TaBLE 2: Comparisons of several noiseless FHE schemes.

Schemes Algebraic structure Ciphertext space Length ratioa Security

Nuida [24] Noncommutative group Vector of dimension 2 1:2|G° Judgement of the kernel element
Yagisawa [25] Octonion ring Octonion ring 1:8 Immune from the Grobner basis attacks
Ours Truncated polynomial ring ~ Vector of dimension 3 1:11 One-way security

Length ratio a: the length ratio between the plaintext and ciphertext. |G|’: the number of elements in group G.

the queried index. So, our single-ciphertext FHE
scheme is well suitable for the single-server PIR
protocol.

(ii) In our protocol, the user can encrypt the index i
with our single-ciphertext FHE scheme and then
send the ciphertext to the server. For the consid-
eration of efficiency, we directly encrypt the index
with a symmetric encryption scheme. The pa-
rameters a, b connect the partial ciphertext ¢ (x, y)
and its corresponding plaintext. In particular, the
parameters a,b invoke a polynomial, and the
polynomial is used to encrypt the queried index;
meanwhile, the polynomial ciphertext c(x, y) can
be directly decrypted with the parameters a,b ig-
noring the parameters u, v as the auxiliary infor-
mation. In turn, the server outputs a function
about the ith data ag; relative to the polynomial
ciphertext. Then, the user decrypts the function
using the parameters a, b, and he will exactly obtain
the ith data g, corresponding to the index i. During
the process, the server provides some computation
and storage space and is unable to acquire the
information of the index i. Consequently, our
single-server PIR protocol achieves the goal as
desired.

(iii) Moreover, we prefer the communication com-
plexity on the user side rather than on the server
side. Hence, in Section 6, the communication
complexity on the user side is much more im-
portant than the overheads on the server side. In
the future, we will delve the communication-ef-
ficient single-server PIR protocol which can at-
tain the tradeoff overheads of the communication
and the computation between the user and the
server.

In the following, we employ the single-ciphertext
FHE scheme proposed in Section 4.1 and the Lagrange
interpolating polynomial to construct our communication-
efficient single-server PIR protocol. The detailed three al-
gorithms are described as follows:

(i) Query generation phase: taking the index
i(0<i< N —1) as the input, the user sends a query
Q (i) to the DB server. The details are described in
Algorithm 3.

(ii) Response generation phase: upon receiving the
query Q (i), the DB server outputs R(i) = g(x, y) to
the user in Algorithm 4. Note that even if (u,v) are
obtained in the query Q(i) = (n,u,v,c(x, y)), the

DB server cannot recover the index i due to not
knowing the symmetric key (a,b).

(iii) Response retrieval phase: refer to Algorithm 5.
Upon receiving the response R(i) = g(x, y), the
user retrieves the data DB[i] = g(a,b)(modn)
corresponding to the index i by using the symmetric
key (a,b).

Correctness: now, we illustrate the correctness of our
proposed single-server PIR protocol, namely, DBJi] =
RR (DB, i,Q(i),R(i)), for any database DB = {ay,a,,...,
ay_,} with any size N and any index 0<i<N - 1.

During the response generation phase, the response
R(i) = g(x, y) is an evaluation of encryption of index i.
Meanwhile, the response R(i) = g(x, y) is N numbers of
addition operations about the whole data g, for 0<I< N — 1.
When decrypting the response R (i) correctly, the user will
obtain that

N-1 _
g(a,b) = a 4c(a,b). J(modn)

=0 0<js<N-1,j#I I=j

N-1 )
= a %(modn)

=0 o0s<jsN-1,j#1t 7]

c(a,b) =i(modn)
_ il i-2 i—(N—l)+
"% 0-1 0-2 0-(N-1 (6)

i-0 i-2 i—(N—l)+

M1 0 127 1-(N =)
...... +

. i-0 i—1

N1 N-1-0 N-1-1

i—(N-2)
N1 (N-g) Mo

When we assume i = 1 for an example, it is obvious that
the above items (6) in g (a, b) all equal 0 since there is an item
i — 1 in the molecule, while item (6) in g (a, b) equals a, since
the molecule is equal to the denominator. Therefore, we can
conclude that once decrypting the response R (i) correctly, the
user will obtain that g(a,b) = a;(modn) since c(a,b) =
i(modn). As a result, the correctness of our proposed single-
server PIR protocol holds, as desired.
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Input: the index i (0<i<N —1).

(4) Set F(x,y) = f(x,y)— f(a,b)(modn).

Output: Q(i) = (n,u,v,c(x, y)).

(1) Randomly generate A/2-bit-long primes p, g subject to gcd (p—1,3) =1 and ged (g—1,3) = 1 and compute n = pq.
o 2 2 i

(2) Randomly choose a;; € Z, for i, j = 0,1,2 and set f(x,y) = Yo Yioa;x'y’.

(3) Randomly choose a,b € Z,, and compute u = a® (modn), v = b* (modn).

(5) Compute c(x, y) = F(x, y) +i(modn).//The symmetric key (a,b) is kept by the user and private for the DB server.

ALGORITHM 3: The query generation algorithm (user).

Input: a database B = {ay, a,, ..

Output: R(i) = g(x, y).

.»ay_1} of size N and a query Q(i) = (n,u,v,c(x, y)).
(1) Compute g(x,y) = Zﬁalalnogjgl\,_l,#,c (x, ) — j/l - j(modn, x> —u, y* —v).

ALGORITHM 4: Response generation algorithm (DB server).

Input: the response R (i) = g(x, y) and the symmetric key (a,b).
Output: DB[i] = g(a,b) (modn).

ALGORITHM 5: The response retrieval algorithm (user).

Remark 2. Note that the length of each item DB[i], for any
0<i<N -1, in DB should be smaller than A. Otherwise,
what the user would obtain from the above response re-
trieval algorithm is not the value of DB [i] as DB[i] had been
damaged by the operation of modulo 7.

5. Security Analyses

In this section, we will discuss the security of our single-
server PIR protocol. We particularly focus on the privacy
properties, i.e., the query index should be privacy preserving,
and the response is also privacy preserving in the proposed
single-server PIR protocol.

(i) The query index is privacy preserving in the pro-
posed single-server PIR protocol: our design goal is
to require that the queried index i should be private,
and no one, except the query user, can determine the
value of i. As we know, the query index is encrypted
by our single-ciphertext FHE scheme, and only the
query user can obtain the index. Because the security
of our single-ciphertext FHE scheme can be reduced
to the 3rd RSA problem, without knowing the pri-
vate key, no one can retrieve the query index. As a
result, the query index can be hidden, and the pri-
vacy-preserving requirement on the query index can
be achieved in the proposed single-server PIR
protocol.

(ii) The response is also privacy preserving in the pro-
posed single-server PIR protocol: since we consider
there is no collusion on the DB server, the server will
not forge the data in DB. Instead, the server will

follow Algorithm 4 and output correct responses.
Moreover, according to the correctness in Section
4.2, it is easy to find that the response R(i) is a
polynomial about the encryption of DBIi].
Automatically, the data DB[i] can be hidden in
the response R (7). No one, except the query user,
can retrieve DBJ[i] by correctly decrypting the
response R(i). Therefore, the response is privacy
preserving in the proposed single-server PIR
protocol (Algorithm 5).

Now, we will present the security of our single-server
PIR protocol by the simulation-based framework.

Theorem 2. Our single-server PIR protocol is secure against
the adversaries of = {User, Server}.

Proof. We will elaborate that there is a probabilistic poly-
nomial time simulator %™ playing the role of the DB
server such that the real view and the ideal one are com-
putationally indistinguishable for User.

é)Server

The interactions between User and are de-

fined by the following steps:

(1) Following Algorithm 3, User sends Q (i) of the index
ito 5Server

(2) &%V sends the encryption of a; back to User

(3) Decrypt the result from &SV with his own secret

key, and User will obtain a; as desired

The real view for User is (Q (i), R;,a;), while the ideal
view for User is (Q (i), Enc(a;), a;). Considering that R; and
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Enc(a;) are indistinguishable, we can conclude that the ideal
view of User is indistinguishable from the real view. Then,
we can claim that User can learn nothing about the data
from the database server except a;, which implies that the
single-server PIR protocol is secure for the DB server.
From the above analyses, we can see our proposed
single-server PIR protocol is confidential and can protect the
information of the index i and the corresponding data a;.

Remark 3. In our security model, we consider the DB server is
honest but curious. However, we cannot avoid the semi-
malicious DB servers. To prevent semimalicious servers from
forging the data in DB as responses, we can add a verifiable
procedure during the response generation phase. The following
is a desirable attempt: we will use a hash function 4 to act on the
data because of its one-wayness. During the response gener-
ation phase, we require the server should substitute a; with
al“h(al) in Algorithm 4 and send a correct result in the re-
sponse g (x, ¥) to the user, where .|| represents concatenation.
There is no doubt that the length of a1||h (a;) is smaller than n,
that is, |a;|+ |h(a;)|<A. Then, the new response R’(i)
=g'(x,y) is an encryption of the data DBIi]||h(DB[i]).
Therefore, the user can verify whether the server forges the
data. After decrypting the response R (i) to obtain a; and h (a;),
the user can compute the hash value /1 (a;) due to knowing a;. If
it equals the value /i (a;) the server sends, the data a; are exactly
corresponding to the index i without errors. If not, the server is
dishonest. The details are omitted here.

6. Performance Evaluation

In this section, we evaluate the performance of our proposed
single-server PIR protocol from two perspectives, i.e., the
theoretical analyses and experimental evaluation by com-
paring it with two existing PIR protocols in [6, 7].

6.1. Theoretical Analyses of Our PIR Protocol on the User Side.
Here, we first illustrate that our single-server PIR protocol is
much more efficient and practical than the PIR protocols in
[6, 7] in terms of the computational complexity, the ex-
tension ratio of the query (similar to the length ratio between
the ciphertext and its underlying plaintext, denoted by
|R(7)]/IDB[i]]), and the communication overhead (denoted
by Q@) + [R(D)]).

Our PIR protocol: in our proposed PIR protocol, since
the query generation phase applies our single-ciphertext
FHE scheme as the basic symmetric encryption scheme,
from the computational complexity analysis in Section 4.1,
we can see the computational complexity is O (1%) for both
the query generation and the response retrieval. In addition,
we can find that |Q(i)| = 124, |R(i)| = 9A, and |[DB[i]| = A.
Hence, the extension ratio of the query is |R (i)|/|[DB[i]| = 9
in our single-server PIR protocol. The communication
overhead represents the length sum of Q(i) and R (i), ie.,
|Q (7)] + |R(i)|. Hence, the communication overhead is 214
in our single-server PIR protocol.

Yi et al.’s PIR protocol [6]: in Yi et al.’s PIR protocol, the
computational complexity depends on the modular addition

operations, and thus, we consider the computational
complexity is O(1). Since the data corresponding to the
index are one bit and |R (i)| equals the length of the DGHV
ciphertext [12], ie., |R(i)| = O(}°) and |DBJi]| =1, the
extension ratio of the query is |R(i)|/|[DB[i]| = O()\°). Fi-
nally, the communication overhead is O (y log N), where y
is the size of the ciphertext and N is the size of DB. Again,
because the DGHV scheme with the ciphertext length O 5
is utilized to construct the PIR protocol, the communication
overhead is O()leog N).

Li et al.’s PIR protocol [7]: the computational complexity
of Li et al.’s PIR protocol mainly relies on the total A’log* N
modular multiplications of the matrix multiplication in the
HAO scheme [13]. From the computational complexity of
modular multiplication mentioned in Section 4.1 and the
parameters in [7], we can easily see that the valid compu-
tational complexity of Li et al.’s PIR protocol is O (A°log* N).
On the contrary, the data underlying the index are one bit,
e.g,|DB[i]| = 1. The query user needs to send two ciphertexts
to the DB server: one is an encryption of the query with
communication overhead O(/lzlog2 N), and the other is an
encryption of the key with communication overhead
(log N + D2t = O(/\‘llog2 N), while the DB server needs
to send back an encryption of DB[i] with communication
overhead O(/Vllog2 N) to the user, ie., |Q(i)| =|R(i)| =
O(A'log® N). As a result, both the extension ratio of the query
and the communication overhead in [7] are O(/\410g2 N).

Table 3 summarizes the differences among the above
three PIR protocols, where the second column “Batching”
captures whether the PIR protocol can directly encrypt the
index from Z,. If the PIR protocol can, we output “Yes”
and “No,” otherwise, and the symbol A is the security
parameter and N is the database size. It is obvious that our
proposed single-server PIR protocol, which has access to
the database DB composed of items from Z,, can directly
encrypt the index from Z, and perform the processing
batch, while the PIR protocols in [6, 7] cannot. This fact
makes our single-server PIR protocol more practical. In
addition, from the table, we can see, in terms of the
communication overhead, our single-server PIR protocol
is far superior to [6, 7] since ours is independent on the
database size N.

When setting the security parameter A = 2048 in our
PIR protocol and A =128 in PIR protocols [6, 7] for
achieving certain security level, Figure 2 compares the
communication overheads of the three PIR protocols
varying with N from 2! to 2%°. From the figure, we can see
that our proposed single-server PIR protocol is much
more efficient, especially for a larger N. Furthermore, no
one can deny that when N is considered in the range
[21,22°], the communication overheads of the PIR pro-
tocols in Yi et al. [6] and Li et al. [7] are largely subject to
the security parameter A in comparison to the database
size N, and the communication overhead O(/\‘llog2 N) in
Li et al.’s protocol is better than O (1’log N) in Yi et al.’s
protocol from Figure 2. To the best of our knowledge, for a
fixed security parameter A, our proposed protocol is the
first single-server PIR protocol, which can achieve O(1)
communication efficiency.
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TaBLE 3: The theoretical performance analyses of PIR protocols.

Schemes Batching cc? ERQ? CO°/bits
Yi et al. [6] No o(1) o) O(Mlog N)
Li et al. [7] No O(/lglog4 N) O()L‘llog2 N) O()Vllog2 N)
Ours Yes o 9 21X

CC*: CC represents a valid computational complexity for the user. ERQP: we use ERQ to denote the extension ratio of the query, i.e., [R(i)|/|[DB[i]|. CO*: CO
of unit bit represents the communication overhead, i.e., [Q(i)| + |R(7)].
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F1GURE 2: Communication cost comparisons varying with N from 2! to 2%° when setting the security parameter A = 2048 in our PIR
protocol and A = 128 in PIR protocols [6, 7] for achieving certain security level.

6.2. Theoretical Analyses of Our PIR Protocol on the Server ~ server are enough, where N is the number of databases.
Side. Although we prefer the communication for the user =~ Meanwhile, every bivariate polynomial also includes oper-
than the computation complexity on the server to evaluate  ations of polynomials modulo 7, x*> — u, and y* —v. And N
the efficiency of our single-server PIR protocol, the theo-  number of bivariate polynomials can be performed in
retical analysis on the server side is necessary to be illustrated ~ parallel or in a preprocessing way. Quantitatively speaking,
in this section. In brief, we will present the computation  the computational complexity is near to O(N - A*), where
burden on the server compared with the PIR protocols in A >2048 bits.
[6, 7]. Yi et al.’s PIR protocol [6]: Yi et al. encrypted the index
Our PIR protocol: the server mainly performs operations ~ with binary strings of length I = |log N| + 1. Every bit is
upon the special bivariate polynomials, i.e., the degree of = protected with an FHE scheme called DGHV10 [12]. During
either variable x (or y) is no more than 2. Specifically, N the response generation in the PIR protocol, the server
number of additions upon the bivariate polynomials for the =~ mainly computes 2/ number of modulus additions and [ — 1
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number of modulus multiplications upon the integers of
length O(X°). In addition, the server also provides I number
of ciphertexts. In a nutshell, the computational burden of the
server is O (log N - A10).

Li et al.’s PIR protocol [7]: after receiving the ciphertexts
of queried index i and the secret key, the server performs a
bootstrapping operation, i.e., homomorphically evaluate the
decryption circuits, which is a very expensive process and
occupies numerous overhead of computations for the server.
The best result of bootstrapping at present is not exceeding
10ms [27] when homomorphically implementing a single
gate. It remains to be far from being practical to homo-
morphically evaluating a computing circuit. We will not
describe the computation complexity of the bootstrapping
but claim that the decryption circuit is of depth almost
O(log A) [20].

Totally speaking, the computational burden of our
single-server PIR protocol is relatively less than [6, 7].
However, the experimental performance of the server will
not be analysed in the following Section 6.3 since we regard
the server powerful and can provide unrestricted compu-
tations. Furthermore, the computation burden of the server
in our single-server PIR can be relaxed in parallel or in a
preprocessing way.

6.3. Experimental Evaluations of Our PIR Protocol. In this
section, we further present some experimental evaluations of
our PIR protocol in comparison with the PIR protocols in
[6, 7]. It is obvious to see that there are two common factors
for the PIR protocols in [6, 7], ie., the queried index is
resolved into its binary presentation and the data in the
database DB only consist of one bit 0 or 1, while in our PIR
protocol, we can directly encrypt the index, not in its binary
representation, and the data in DB belonging to Z,, are more
practical. The details of experimental settings are as follows.

Our PIR protocol: we implement our proposed protocol
on a personal computer by utilizing the NTL [28] and the
C++ language. The environment is listed as follows:

(i) CPU: Intel(R) Core(TM) i3-7100 3.90 GHz
(i) RAM: 4.00 GB
(iii) OS: Windows 10, 64 bits

The length of the modulus of # in our experiment in-
cludes 2048 bits, 2560 bits, and 3072 bits. The size N of DB
varies from 800, 1000, to 1200. Although the number of
items in the database N seems a little small, the whole space
of the database is not small at all. Considering that the
response generation (RG) phase is performed by the DB
server and the query generation (QG) phase and response
retrieval (RR) phase are run at the user side, we test 100
instances on Z,, for every phase. The average results are given
in Tables 4-6.

The first column called “|n|” represents the length of RSA
modulus, and the data in DB are from Z,. The second
column means the number of our tested instances. We use
the time of the query generation phase, response retrieval
phase, and response generation phase to illustrate the per-
formance of our single-server PIR protocol.

11

From Tables 4 to 6, it is easy to see that the size N of DB
has a little bit effect on the user side in our single-server PIR
protocol, which can almost be ignored. We also see that the
time in the query generation phase and response retrieval
phase increases a little with the modulus growing under the
same situations. On the contrary, the time cost on the DB
server side largely depends on the size N. When the database
size N is fixed, the DB server takes more time with # in-
creasing. Similarly, when the modulus # is fixed, the DB
server also takes more time with N increasing. In brief, it
shows that our single-server PIR protocol is efficient. For
example, even when the modulus is n = 3072 bits, the query
generation phase only costs 5.4 ys, and the response retrieval
phase costs 2.82 ms at most when all data in the database DB
are drawn from Z,,.

The effects of database size N on the user and the DB
server are readily comprehensible. Theoretically speaking,
there are just modular multiplications and some negligible
modular additions for the user, all of which are irrelevant to
the size N during the query generation phase, let alone the
response retrieval phase. On the contrary, the response
generation phase completely relies on all the data in database
DB. Hence, the size N is the main factor for the time cost at
the DB server side. Nevertheless, the server can perform
parallel computations to reduce the computational com-
plexity from O(N?log” 1) to O(N log N log” n). Further-
more, when a powerful DB server is employed, the time costs
at the DB server side should be reduced greatly.

Yietal’s PIR protocol [6]: Yietal. [6] experimented on a
PBR protocol (an extension of a PIR protocol) with 10,000
blocks instead of a PIR protocol. The query generation phase
costs 10 s when the modulus is of 882 bits. The overhead is
obviously larger than our single-server PIR protocol. In
addition, Yi et al.’s scheme did not discuss the time cost of
the response retrieval phase. On this basis, our single-server
PIR protocol has obvious advantages over [6]. Moreover,
their PBR protocol cannot encrypt the index from Z,,
let alone within a few milliseconds.

Li et al.’s PIR protocol [7]: Li et al. [7] proposed a PIR
protocol based on the lattice assumption. However, they did
not use simulation to evaluate their PIR protocol. Never-
theless, we can claim that our single-server PIR protocol is
more efficient than [7] based on the aforementioned the-
oretic analyses of computational complexity, the extension
ratio of the query, and the communication overhead. In
addition, the performance of Li et al.’s PIR protocol [7] relies
on the efficiency of the bootstrapping and the size of the
secret key. The size of the secret key in [7] is O (A log N), and
by now, the best result for bootstrapping does not exceed
10 ms to evaluate a single gate in [27], which is impractical.

To sum up, our experimental evaluation further dem-
onstrates that our single-server PIR protocol is more efficient
and practical.

7. Related Work

In this section, we will briefly review some FHE schemes and
some other existing single-server PIR protocols, which are
closely related to our proposal.
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TaBLE 4: The computational costs of our PIR protocol under N = 800.
|| Instances QG phase RR phase RG phase
2048 bits 100 3.7 us 1.36 ms 1.65h
2560 bits 100 4.6 us 2.00 ms 241h
3072 bits 100 5.2us 2.82ms 3.16h
TaBLE 5: The computational costs of our PIR protocol under N = 1000.
|n] Instances QG phase RR phase RG phase
2048 bits 100 3.7 us 1.34 ms 241h
2560 bits 100 4.5us 2.01 ms 3.89h
3072 bits 100 5.4 us 2.80 ms 498h
TaBLE 6: The computational costs of our PIR protocol under N = 1200.
|n| Instances QG phase RR phase RG phase
2048 bits 100 3.5us 1.38 ms 3.55h
2560 bits 100 4.5 us 2.04 ms 5.45h
3072 bits 100 5.3 us 2.80 ms 7.09h

Fully homomorphic encryption: FHE enables meaningful
process over encrypted data without access to the original
plaintext data. In the past years, many generic FHE con-
structions have been proposed [10, 12, 13, 18-20]. For example,
the first generation is represented by the DGHV FHE scheme
[12], which serves as a vital tool in building a PIR protocol in
[6]. However, most of them turn out to be impractical. The
main reason is that the noises are added to the ciphertexts for
the consideration of the security. Later, a new class of FHE
schemes without noises have naturally been exploited to avoid
complicated noise management [24-26, 29]. For example,
Nuida [24] declared a beautiful public key FHE frame without
noises, employing a commutator and an encoding scheme over
two noncommutative groups. The security is based on an
assumption that judging whether an element is in the kernel is
difficult, which is not standard. Yagisawa [25, 26] proposed
noiseless FHE schemes with the underlying octonion ring over
the finite field, which are immune from the Grobner basis
attacks. Nevertheless, it remains an open problem to prove
strictly secure and feasible in the framework of provable se-
curity. In this work, motivated by the noiseless FHE schemes,
we define a special kind of algebraic structure called truncated
polynomial rings to construct a single-ciphertext FHE scheme.
Our proposed scheme is noiseless, and hence, it inherently
supports fully homomorphic computations on any univariate
polynomials, such as the single-server PIR protocols. In ad-
dition, there is a security reduction between the one-wayness of
our single-ciphertext FHE scheme and the 3rd RSA problem
we define. Compared with the FHE schemes in [6, 7], our
single-ciphertext FHE scheme is noiseless and of the smallest
ciphertext size, which offer enormous convenience for the
single-server PIR protocols.

Single-server PIR protocols: a single-server PIR protocol
allows a user to retrieve the i-th data from a database server
without revealing the index i. The past years have witnessed
the development of the single-server PIR protocols,

especially in communication cost [30-33]. For example,
Cachin et al. [31] proposed a PIR protocol based on the
¢-hiding assumption with communication complexity
O(log* N). And the Damgard-Jurik scheme [34] was uti-
lized by Lipmaa [32] to construct a PIR protocol, which
achieved O (log” N) communication complexity. However,
most of them are inefficient due to depending on the da-
tabase size N, especially when N is million or even larger
magnitude in real life. Hence, it will be a great work to
construct a single-server PIR protocol with communication
overhead O (1), which is irrelevant to the database size N. In
this work, we devote ourselves to designing a single-server
PIR protocol with communication efficiency O (1). First, on
the basis of the single-server PIR protocols in [6, 7], we tend
to resort to the FHE schemes since the FHE schemes not
only keep privacy preserving but also support direct com-
putations on encrypted data. Second, the Lagrange inter-
polating polynomial is a suitable tool for the database
DB = {(i, DB[i])|0 <i < N — 1} owing to its property. Hence,
an FHE scheme and the Lagrange interpolating polynomial
technique are used to construct our single-server PIR
protocol. Meanwhile, theoretical analyses and experimental
evaluations are performed to demonstrate that our single-
server PIR protocol is efficient, which is the first one of
communication overhead O(1).

8. Conclusions

In this paper, we have proposed a new communication-
efficient PIR protocol by using homomorphically computing
univariate polynomials. Specifically, we first propose a new
cryptographic primitive called single-ciphertext FHE and
instantiate the special kind of FHE supporting evaluations of
a single ciphertext. Then, we illustrate how the single-
ciphertext FHE scheme works in our single-server PIR
protocol. Theoretical analyses and experimental evaluations
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are both conducted to demonstrate that it is more efficient
and practical to apply our single-ciphertext FHE scheme to
the PIR protocol. To the best of our knowledge, our pro-
posed protocol is the first PIR protocol, which can achieve
O(1) communication efliciency on the user side, irrelevant
to the database size N. In future work, we will study other
FHE techniques to exploit more efficient PIR protocols,
which can achieve the tradeoft overheads of the commu-
nication and the computation between the user and the
server.
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